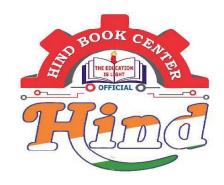


Hindbookcenter

Hind Book Center & Photostat


MADE EASY

Computer Science Engineering / IT
Toppers Handwritten Notes
Digital Logic
By- Sriniwas Sir

- Colour Print Out
- Blackinwhite Print Out
- Spiral Binding, & Hard Binding
- Test Paper For IES GATE PSUs IAS, CAT
- All Notes Available & All Book Available
- Best Quaity Handwritten Classroom Notes & Study Materials
- IES GATE PSUs IAS CAT Other Competitive/Entrence Exams

visit us:-www.hindbookcenter.com

Courier Facility All Over India (DTDC & INDIA POST)
Mob-9711475393

Hindbookcenter

ALL NOTES BOOKS AVAILABLEALL STUDY MATERIAL AVAILABLE
COURIERS SERVICE AVAILABLE

MADE EASY, IES MASTER, ACE ACADEMY, KREATRYX

ESE, GATE, PSUs BEST QUALITY TOPPER HAND WRITTEN NOTES

MINIMUM PRICE AVAILABLE @ OUR WEBSITE

1. ELECTRONICS ENGINEERING

2. ELECTRICAL ENGINEERING

3.MECHANICAL ENGINEERING

4. CIVIL ENGINEERING

5.INSTRUMENTION ENGINEERING

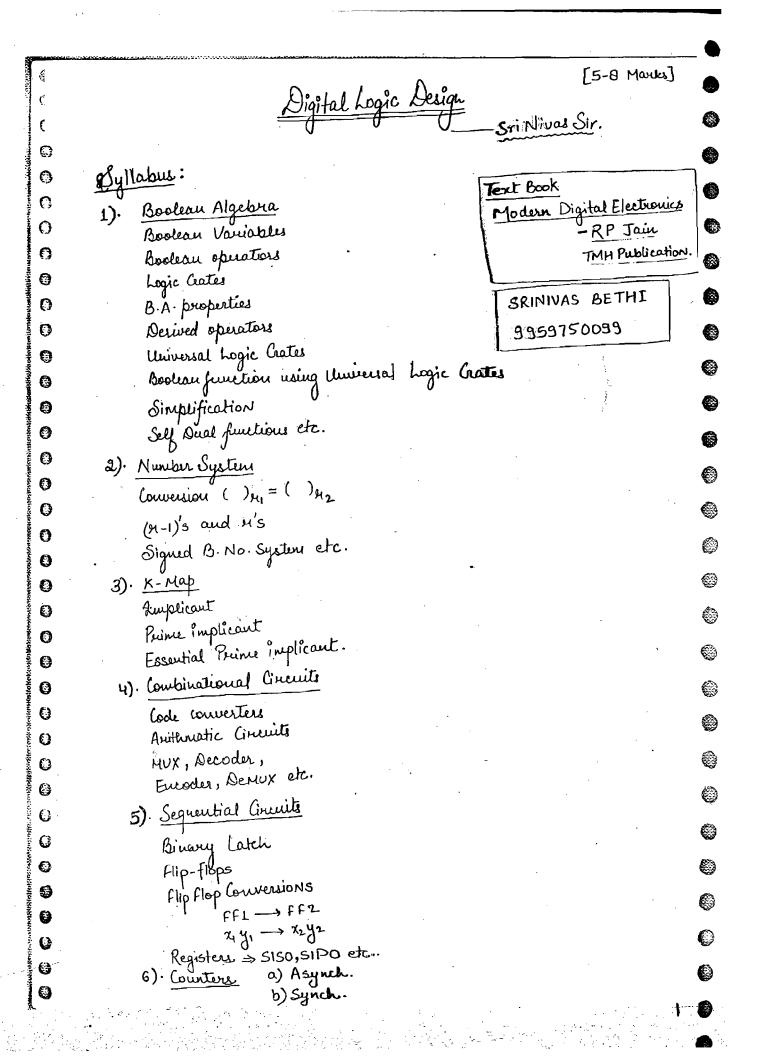
6. COMPUTER SCIENCE

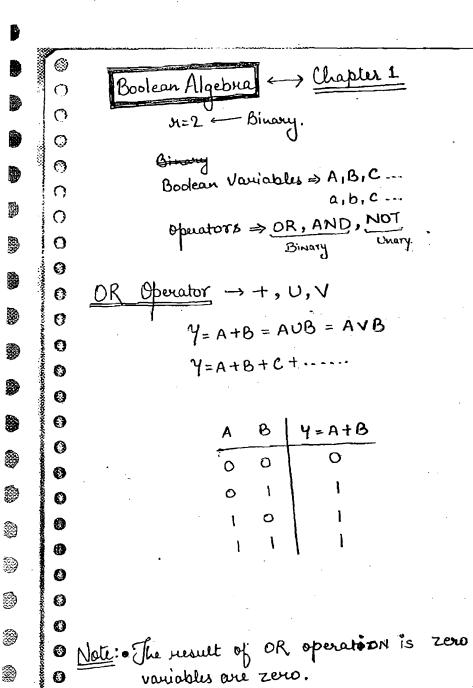
IES, GATE, PSU TEST SERIES AVAILABLE @ OUR WEBSITE

- **❖** IES –PRELIMS & MAINS
- ❖ GATE
- ➤ NOTE;- ALL ENGINEERING BRANCHS
- > ALL PSUs PREVIOUS YEAR QUESTION PAPER @ OUR WEBSITE

PUBLICATIONS BOOKS -

MADE EASY, IES MASTER, ACE ACADEMY, KREATRYX, GATE ACADEMY, ARIHANT, GK


RAKESH YADAV, KD CAMPUS, FOUNDATION, MC-GRAW HILL (TMH), PEARSON...OTHERS


HEAVY DISCOUNTS BOOKS AVAILABLE @ OUR WEBSITE

Shop No.7/8 Saidulajab Market Neb Sarai More, Saket, New Delhi-30 Shop No: 46 100 Futa M.G. Rd Near Made Easy Ghitorni, New Delhi-30 F518 Near Kali Maa Mandir Lado Sarai New Delhi-110030 Shop No.7/8 Saidulajab Market Neb Sarai More, Saket, New Delhi-30

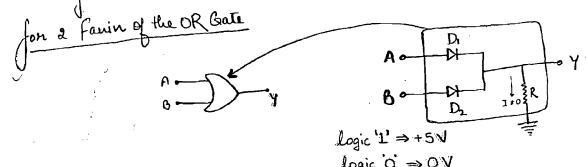
Website: www.hindbookcenter.com
Contact Us: 9711475393

 \bigcirc $\int_{t_{k}}^{t_{k}}\tilde{A}_{k}$ \bigcirc .(O 0

Note: • The result of OR operation is zero if and only if, all the

· OR Grate

()


6)

ABC

F 1 1

Y=A+B+C

· No. of inputs in the logic gate is known as Fanin of the logic gate.

Logic O → OV

Touth Table is one consisting of all possible combination of the variables along with the result.

for
$$n \Rightarrow a^n \text{ Rows}$$
value $\Rightarrow [0,1,2,....(2^n-1)]$

Α	B	4= A.B	
0	0	0	
D	1	٥	
ì	0	0	
1	ł	.1	

A	B	C.	Y= A.B.C	
O	0	0	0	
D	0	1	0	
O	1	0	0	
0	ľ	1	0	
i	0	0	O	
}	0	1	0	
j	Ī	٥	0	
1	1	1	. 1	

Note: • The result of AND operation is zero, if at least one of the variable is zero.

· AND Grate

#

4 A = O ⇒ Y = B	or B	AND O
$ \begin{array}{ccc} \downarrow & A = L \Rightarrow Y = \\ \downarrow & A = B = x \Rightarrow Y = \end{array} $	1 x	8 x
D 4 A ≠B ⇒ Y=	1	0
Enable input ⇒	.0,	1
Disable input ⇒	Ţ.	.0.

0

• Enable 1/p is the one, it makes the device active.

Disable 1/p is the one, it will make the device is to be inactive.

() 0 Y= A = A' 0 Y = NOTA \bigcirc (1) 0 **()** · NOT Gate Note: 0 · NOT operator is also known as Inverter. 0 0 0 BOOLEAN ALGERRA PROPERTIES: 0 Distributivity. 1). A+A+... = A 6). A+BC = (A+B) (A+C) 0 A · A · A · - - · = A Dual of (6). A . [6+C] = AB + AC 0 2) A+0=A 7). A+ AB = A+B 0 A[A+B] = AB $A \cdot 1 = A$ 0 8) A+AB = A+B 0 A+1=1A[A+B] = AB 0 A.0 = 0 9). A+AB = A 0 4). A. A = 0 A[A+B]=A0 $A + \overline{A} = 1$ 0 Dual Operation 0 OR - AND 0 $0 \longleftrightarrow 1$. **(3)** 3 0 Nus. A+B[C+D(E+F)] 0 Dual ⇒ Ā[B+C[D+ĒF]] 0 3 0 Variable 'x' 0 Literal 'x' => 'x' or 'x' 0 There is No effect of the dual operation on the 0 0

Literal.

Z